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The limits to the error due to truncation of
the numeric integration of the one-sided
Laplace transform of a relaxation function
in the time domain into its equivalent fre-
quency domain are established. Separate
results are given for large and smallv .
These results show that, for a givenv , only
a restricted range of time samples is needed
to perform the computation to a given accu-
racy. These results are then combined with
a known error estimate for integration by
cubic splines to give a good estimate for
the number of points needed to perform the

computation to a given accuracy. For a
given data window betweent1 and t2, the
computation time is shown to be propor-
tional to ln(t1/t2).
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1. Introduction

The transformation of relaxation data recorded in the
time-domain into their equivalent in the frequency-
domain has been a difficult problem. The data can cover
a wide range of times with a correspondingly wide
range of frequencies. Both frequency and time are typ-
ically measured on logarithmic scales that can cover
many decades. What would be desirable is a method for
computing the transform to a level of accuracy consis-
tent with the original time data. Also, the time and space
requirements should be such that transform can be
performed as the data are being acquired so that the
frequency domain data can be followed during the
course of a long measurement in the time domain.

In a previous paper [1], it was demonstrated that the
use of a cubic spline as an integrating tool provided a
rapidly convergent method as a function of sampling
density for obtaining the Laplace transform of a relax-
ation function measured as a function of time. The data
were assumed to be sampled uniformly on a logarithmic
time scale and that the results were displayed on the
equivalent logarithmic frequency scale. The method
was numerically stable and quite efficient, being order

O[ln(t2/t1)2] in computation, wheret1 and t2 are the
beginning and ending times of the measurement.

Some problems remained in the method. Unlike a
conventional FFT type transform, the logarithmic spac-
ing requires the integration of sine and cosine functions
that are not harmonically related. Also, the integrals
over powers times the sines and cosines must be evalu-
ated very accurately for small arguments where the
analytic expressions break down numerically. These
conditions require either an extensive computation per
point, slowing down the transform, or else the use of a
look-up table that can get very large. An examination of
the quantities involved in the computation suggested
that too much computation was being done.

This paper demonstrates that it is possible to restrict
the computation to a predetermined diagonal band
transformation matrix such that the computation be-
comesO[ln(t2/t1)] and thus far more efficient. As a
consequence, the transformation need be defined for at
most a normalized frequency decade. This drastically
reduces the size of the look-up table so that it can be
readily precomputed prior to the main computation, or
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stored as a table without requiring too much space.
Furthermore, the computation becomes almost indepen-
dent of the size of the data window.

The banding criteria will be developed in terms of a
desired tolerance. This will be done separately for both
small and largevt . When combined with an estimate for
the point density needed to sample a relaxation function
with a spline, these results lead to an explicit estimate
for the number of points in the band.

It should be noted that these results do not address the
problem of continuing the integral outside the data lim-
its. This problem is independent of the computation con-
sidered here and has been addressed previously [1], [2].
However, the results presented here do address the ques-
tion as to how much the missing data outside the mea-
suring window affects the result for any computed fre-
quency.

2. Convergence Criteria

Cubic splines have been intensively studied for their
convergence properties. These results can be applied
directly to the transform of a relaxation function. For the
problem considered here, consider a relaxation function
C(t ) normalized to vary between 0 and 1, measured in
a data windowt1 # t # t2. One wishes to compute the
Laplace transform ofC(t+) numerically:

C* = Et2

t 1

e–st dC
dt

dt ,

Real(s) = 0+. (1)

In the data window this becomes

C* = Et2

t 2

e–ivt C' dt , (2)

whereC' is the first derivative ofC with respect tot .
Let S(h) be the spline passing throughC(t ) using a

mesh spacing measured byh. Then the integral can be
written as

C*(v ) = Ee–vt S'(h) dt + Ee–vt (C' – S'(h)dt, (3)

where the second term represents the error from using
the spline to represent the relaxation function. Since
ue–ivtu = 1, the second term can be bounded by

UEe–ivt (C' – S')dtU # Eu(C' – S')udt # uC– Su. (4)

For a relaxation function that can be represented as a
distribution of exponentials, all derivatives exist. Fur-
thermore, if the samples used to determineS are uni-
formly spanned in lnt , then the mesh spacingh uni-
formly approaches zero as the sampling density is
increased. This leads to the result that

UEe–ivt(C' – S')dtU # s = O(h4), (5)

wheres is a tolerance andh = ln (tj /tj–1) [4]. For an
exponential, the constant of proportionality for base 10
logorithms can be taken as unity direct computation [1],
so that

s # [lg(tj /tj–1)]4. (6)

In general, a relaxation function is not a simple expo-
nential. It can, however, be represented as a distribution
of exponentials [5]. For any given exponential, the error
term represented in Eq. (6) is a strongly peaked function
of v in 1 < vt < 10. Therefore, for a general relaxation
function and for a givenv , only that part of the distribu-
tion with values ofvt near the peak in the error term
can contribute as much as Eq. (6). Therefore, the error
for a relaxation function characterized by a broad distri-
bution of relaxation times must be less than that given
by Eq. (6).

3. Short Time Limit

Since a cubic spline is a piecewise polynomial, once
the spline is fitted to the data, one must evaluate the
integrals of the form

Eb

a

xn sin(x) dx,

Eb

a

xn sin(x) dx,

n = 0, 1, 2. (7)

Only powers to the second degree are needed as the
integration is carried out on the derivative of the fitted
spline. As noted before [1], the best way to evaluate
these integrals for smallx = vt is to use the Taylor
expansion of the integrals. If only the leading term of
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the Taylor expansions are kept, except for the intgral over
cos(x), the relative errorR is given by

R <
x2

2
, x < 1. (8)

This shows that the explicit integration can be cut off at

x = 2s1/2 . (9)

To this integration, a running sum of the derivativeC'
must be added to the cosine integral which represents
the real component of transform.

From Eq. (6), the number of points required per
decade is

n = S1
sD1/4

. (10)

This then gives the number of data pointsNL for x # 1
as

NL =
1

2s1/4 lgS 1
2sD . (11)

For the data corresponding tox smaller than the cut-
off, one has simply

C*(v ) = Cj (N L) – C1 –
iv
2 Oj(NL)

j=2

C'j St2
j – t2

j–1D , (12)

where j (NL) is the highest index corresponding to
vt < 2s1/2. These terms can easily be kept as a running
sum.

4. Long Time Limit

Whereas the short time data can be kept as a running
sum, the long time data beyond a cutoff can be simply
disregarded. To show this, consider the long time part of
the transform

Lt 2(s) =
A
t E`

t 2

e–st e–t/t dt . (13)

This integral is easily evaluated to give

Lt 2 = A
e–t2/teivt

1 + ivt
. (14)

Let

x = vt2,

y = t2/t . (15)

For a full scale of unity

A–1 $
1
t E

t2

0

et/t dt = 1 – e–y ,

A #
1

1 – e–y . (16)

This gives

Lt 2 = Ae–yF 2
y2 + x2 –

ixy
y2 + x2G [cosx – i sinx ] . (17)

The maximum value is give in the limit ofy small,
t >> t1 to give

Lt 2 =
1
yFy2

x2 – i
y
x
G [cosx – i sinx ] ,

≈ –
i
x

(cosx – i sinx ) . (18)

Thus, for a tolerance ofs , vt2 = l /s , one obtains for
a cutoff from Eq. (18).

vtr =
1
s

=
1
h4 . (19)

This gives the number of data pointsNH for x $ 1 as

NH = S1
sD1/4

lgS1
sD . (20)

5. Final Results

The results given above can be simply combined to
give the total width over which the data need to be
integrated. This is give from Eqs. (11) and (20) as

N = S1
sD1/4 F3

2
lgS1

sD +
1
2

lgS1
2DG . (21)

This expression can be readily evaluated fors = 10–3,
10–4, and 10–5 as 25, 59 and 131 data points respectively.

For a given precision, the frequency spacing should
correspond to the sampling density, which is a constant
for a given precision. Therefore, the number of frequen-
cies calculated is proportional to ln(t2/t1). Also, as the
computation is a fixed number of operations for a given
frequency, the total computation must beO[ln(t2/t1)].
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This makes the algorithm only slowly dependent on the
range of the data and, for wide frequency ranges, very
efficient.

In a computation on actual data, since the integrals
can be defined in terms ofvt , if bothv andt are equally
spaced in logv and log t , then only a single row of
values need to be stored, since it can be shifted along the
data. However, this typically results in awkward fre-
quency values and convenient, rounded values are more
desirable. In this case, one only has to use a table large
enough to correspond to a normalized decade of fre-
quencies. This is still a great savings in time and storage.

Where the transformation band crosses the edges of
the data att1 and t2 mark the points at which behavior
outside the measurement window in the time domain
affect the desired results in the frequency domain. For
the parts of the desired frequency domain where this
occurs, one must add the continuation mentioned previ-
ously to minimize a possibly large error [2].

In the time-domain instrument in which this
algorithm was embedded [2], experimental limitations
prevented a true logarithmic spacing for the first few
time samples as the sampling rate was not dense
enough. This limitation was easily overcome by a sub-
sidiary calculation over the first few data points, until
the logarithmic spacing could be properly used, and then
picking up the integral table at the appropriate point.
While this did introduce some complexity to the pro-
gram, it had little effect on the running time of the
algorithm. For a spline taken at ten points per decade
and for the transformation taken forvt from 10–3 to 105,
the computation was only a few times longer than the
spline fitting, which used an over relaxation method that
also was nearlyO[ln(t2/t1)] in computation. This band
was a little broader than the 33 10–2 to 104 band needed
to match the maximum error of 104 to minimize round-
off and truncation error for the instrument.

The algorithm has also been compiled into a
FORTRAN subroutine1 to carry out the numerical
transform for a supplied real function. In this case, the
time series data window is set by the required frequency
window and tolerance. Also, the integration window has
been made symmetric about the normalized frequency
for clarity in the code so that running sums are not
required and only the value of the transformed function
at the beginning of the summation is needed for initial-
ization. In this routine, the tolerance is a passed parame-
ter and the routine determines the data window required
to perform the transform.

For illustration, the time function

C(t ) =
g(b ,t )
G(b )

, (22)

1 The source code is available upon request from the author.

with known transform,

C*(v ) =
1

(1 + ivt )b , (23)

the Cole-Davidson Function [7], whereg (a, x) and G
are the incomplete gamma and gamma functions respec-
tively [8], was numerically transformed and compared
with the analytic transform. For a requested tolerance of
10–6, the maximum computed error was half that. The
results are shown in Fig. 1.

Fig. 1. The computational error for a specified tolerance of 10–6 for
the Cole-Davidson relaxation function with an exponent of 0.5.
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